skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Oliver, Ruth Y"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The general public and scientific community alike are abuzz over the release of ChatGPT and GPT-4. Among many concerns being raised about the emergence and widespread use of tools based on large language models (LLMs) is the potential for them to propagate biases and inequities. We hope to open a conversation within the environmental data science community to encourage the circumspect and responsible use of LLMs. Here, we pose a series of questions aimed at fostering discussion and initiating a larger dialogue. To improve literacy on these tools, we provide background information on the LLMs that underpin tools like ChatGPT. We identify key areas in research and teaching in environmental data science where these tools may be applied, and discuss limitations to their use and points of concern. We also discuss ethical considerations surrounding the use of LLMs to ensure that as environmental data scientists, researchers, and instructors, we can make well-considered and informed choices about engagement with these tools. Our goal is to spark forward-looking discussion and research on how as a community we can responsibly integrate generative AI technologies into our work. 
    more » « less
  2. Growing threats to biodiversity demand timely, detailed information on species occurrence, diversity and abundance at large scales. Camera traps (CTs), combined with computer vision models, provide an efficient method to survey species of certain taxa with high spatio-temporal resolution. We test the potential of CTs to close biodiversity knowledge gaps by comparing CT records of terrestrial mammals and birds from the recently released Wildlife Insights platform to publicly available occurrences from many observation types in the Global Biodiversity Information Facility. In locations with CTs, we found they sampled a greater number of days (mean = 133 versus 57 days) and documented additional species (mean increase of 1% of expected mammals). For species with CT data, we found CTs provided novel documentation of their ranges (93% of mammals and 48% of birds). Countries with the largest boost in data coverage were in the historically underrepresented southern hemisphere. Although embargoes increase data providers' willingness to share data, they cause a lag in data availability. Our work shows that the continued collection and mobilization of CT data, especially when combined with data sharing that supports attribution and privacy, has the potential to offer a critical lens into biodiversity. This article is part of the theme issue ‘Detecting and attributing the causes of biodiversity change: needs, gaps and solutions’. 
    more » « less
  3. Over the past five decades, a large number of wild animals have been individually identified by various observation systems and/or temporary tracking methods, providing unparalleled insights into their lives over both time and space. However, so far there is no comprehensive record of uniquely individually identified animals nor where their data and metadata are stored, for example photos, physiological and genetic samples, disease screens, information on social relationships.Databases currently do not offer unique identifiers for living, individual wild animals, similar to the permanent ID labelling for deceased museum specimens.To address this problem, we introduce two new concepts: (1) a globally unique animal ID (UAID) available to define uniquely and individually identified animals archived in any database, including metadata archived at the time of publication; and (2) the digital ‘home’ for UAIDs, the Movebank Life History Museum (MoMu), storing and linking metadata, media, communications and other files associated with animals individually identified in the wild. MoMu will ensure that metadata are available for future generations, allowing permanent linkages to information in other databases.MoMu allows researchers to collect and store photos, behavioural records, genome data and/or resightings of UAIDed animals, encompassing information not easily included in structured datasets supported by existing databases. Metadata is uploaded through the Animal Tracker app, the MoMu website, by email from registered users or through an Application Programming Interface (API) from any database. Initially, records can be stored in a temporary folder similar to a field drawer, as naturalists routinely do. Later, researchers and specialists can curate these materials for individual animals, manage the secure sharing of sensitive information and, where appropriate, publish individual life histories with DOIs. The storage of such synthesized lifetime stories of wild animals under a UAID (unique identifier or ‘animal passport’) will support basic science, conservation efforts and public participation. 
    more » « less
  4. Abstract Migratory birds have the capacity to shift their migration phenology in response to climatic change. Yet the mechanistic underpinning of changes in migratory timing remain poorly understood. We employed newly developed global positioning system (GPS) tracking devices and long-term dataset of migration passage timing to investigate how behavioral responses to environmental conditions relate to phenological shifts in American robins (Turdus migratorius) during spring migration to Arctic-boreal breeding grounds. We found that over the past quarter-century (1994–2018), robins have migrated ca. 5 d/decade earlier. Based on GPS data collected for 55 robins over three springs (2016–2018), we found the arrival timing and likelihood of stopovers, and timing of arrival to breeding grounds, were strongly influenced by dynamics in snow conditions along migratory paths. These findings suggest plasticity in migratory behavior may be an important mechanism for how long-distance migrants adjust their breeding phenology to keep pace with advancement of spring on breeding grounds. 
    more » « less
  5. null (Ed.)
    The Arctic is entering a new ecological state, with alarming consequences for humanity. Animal-borne sensors offer a window into these changes. Although substantial animal tracking data from the Arctic and subarctic exist, most are difficult to discover and access. Here, we present the new Arctic Animal Movement Archive (AAMA), a growing collection of more than 200 standardized terrestrial and marine animal tracking studies from 1991 to the present. The AAMA supports public data discovery, preserves fundamental baseline data for the future, and facilitates efficient, collaborative data analysis. With AAMA-based case studies, we document climatic influences on the migration phenology of eagles, geographic differences in the adaptive response of caribou reproductive phenology to climate change, and species-specific changes in terrestrial mammal movement rates in response to increasing temperature. 
    more » « less